DNA Sequencing Publications

Standard Sequencing

1. Carro MS et al.
 DEK Expression is controlled by E2F and deregulated in diverse tumor types.
 Cell Cycle. 2006 Jun;5(11)

2. Lassandro L et al.
 The DNA sequence quality machine at IFOM: a simple Web-based tool for quantitative assessment of sequencing reactions.

Full exon sequencing

1. Salsano E et al.
 An autoimmune neurological disease due to interleukin 6 hypersecretion.
 J Neuroinflammation. 2013 Feb 21;10:29

 The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway.

3. Westhoff B et al.
 Alterations of the Notch pathway in lung cancer.
 Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22293-8

Mutation, SNP, Variant Analysis

1. De Grassi A et al.
 Deep sequencing of the X chromosome reveals the proliferation history of colorectal adenomas.

2. Belloni E et al.
 Genomic characterization of asymptomatic CT-detected lung cancers.
 Genomic characterization of asymptomatic CT-detected lung cancers.

3. De Grassi A et al.
 Ultradeep sequencing of a human ultraconserved region reveals somatic and constitutional genomic instability.
 PLoS Biol. 2010 Jan;8(1)
4 Falini B et al.
Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia.

5 Colombo E et al.
Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant.

6 Mariano AR et al.
Cytoplasmic localization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal.

7 Alcalay M et al.
Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance.
Blood. 2005 Aug 1;106(3):1999-2005

Clinical (in collaboration with CGT Lab)

1 Catucci I et al.
Haplotype analyses of the c.1027C>T and c.2167_2168delAT recurrent truncating mutations in the breast cancer-predisposing gene PALB2.

2 Ovarian Cancer Association Consortium et al.
No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.
Gynecol Oncol. 2016 May;141(2):386-401

3 Pirie A et al.
Common germline polymorphisms associated with breast cancer-specific survival.
Breast Cancer Res. 2015 Apr 22;17:58

4 Kabisch M et al.
Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer.
Carcinogenesis. 2015 Feb;36(2):256-71
5 Kuchenbaecker KB et al.
Identification of six new susceptibility loci for invasive epithelial ovarian cancer.
Nat Genet. 2015 Feb;47(2):164-71

6 Ghoussaini M et al.
Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation.

7 Sawyer E et al.
Genetic predisposition to in situ and invasive lobular carcinoma of the breast.

8 Osorio A et al.
DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

9 Peterlongo P et al.
Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.
Cancer Epidemiol Biomarkers Prev. 2015 Jan;24(1):308-16

10 Couch FJ et al.
Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

11 Bojesen SE et al.
Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer.

12 Colombo M et al.
Comparative in vitro and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations.

13 Brewster BL et al.
Identification of fifteen novel germline variants in the BRCA1 3’UTR reveals a variant in a breast cancer case that introduces a functional miR-103 target site.
Hum Mutat. 2012 Dec;33(12):1665-75.
14. Catucci I et al.
Germline mutations in BRIP1 and PALB2 in Jewish high cancer risk families.
Fam Cancer. 2012 Jun 13

15. Mavaddat N et al.
Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

16. Catucci I et al.
The CASP8 rs3834129 polymorphism and breast cancer risk in BRCA1 mutation carriers.

17. De Vecchi G et al.
The p53 Arg72Pro and Ins16bp polymorphisms and their haplotypes are not associated with breast cancer risk in BRCA-mutation negative familial cases.

18. Catucci I et al.
PALB2 sequencing in Italian familial breast cancer cases reveals a high-risk mutation recurrent in the province of Bergamo.
Genet Med. 2014 Sep;16(9):688-94.

19. French D et al.
Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers.

20. Catucci I et al.
The SNP rs895819 in miR-27a is not associated with familial breast cancer risk in Italians.

21. Peterlongo P et al
Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.

22. Purrington KS et al.
Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade.
Bojesen SE et al.
Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer.

Colombo M et al.
Comparative in vitro and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations.

Catucci I et al.
Sequencing analysis of SLX4/FANCP gene in Italian familial breast cancer cases.

Peterlongo P et al.
The rs1297533 variant in the miR-125a and breast cancer risk in Germany, Italy, Australia and Spain.

Verderio P et al.
A BRCA1 promoter variant (rs11655505) and breast cancer risk.

Catucci I et al.
Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases.

NGS data validation

1 Belloni E et al.
Whole-exome sequencing identifies driver mutations in asymptomatic CT-detected lung cancers with normal karyotype.
Accettato in Febbraio 2015

2 Riva L et al.
Acute promyelocytic leukemias share cooperative mutations with other myeloid-leukemia subgroups.
Blood Cancer J. 2014 Mar 21

3 Bodini M et al.
The hidden genomic landscape of acute myeloid leukemia: subclonal structure revealed by undetected mutations.
Blood. 2014 Dec 12.